Journal of

The Chemical Society,

Chemical Communications

NUMBER 19/1975

8 OCTOBER

Preparation and X-Ray Structure of a Dimeric Diamagnetic Complex of Nickel(II) with Distorted Tetrahedral Co-ordination

By CARLO MEALLI, STEFANO MIDOLLINI, and LUIGI SACCONI*

(Istituto di Chimica Generale e Inorganica, Università, and Laboratorio C.N.R., Via J. Nardi, 39, Florence, Italy)

Summary The diamagnetic dimeric complex $[Ni_2S \{MeC-(CH_2PPh_2)_3\}_2][BPh_4]_2$ is shown by X-ray diffraction to contain two nickel(II) atoms with a distorted tetrahedral co-ordination, joined by a linearly bridging sulphur atom.

UNPOLYMERIZED transition-metal complexes with unsubstituted sulphur as ligand are rare on account of their high tendency to revert to binary sulphides.¹ Thus the formation of dark green crystals of $[Ni_2S \{MeC(CH_2PPh_2)_3\}_2]$ - $[BPh_4]_2, 1.5HCONMe_2$ on bubbling H₂S through a solution of $[Ni(H_2O)_6][BF_4]_2$ (1 mmol), NaBPh₄ (1 mmol), and 1,1,1-tris(diphenylphosphinomethyl)ethane (1 mmol) in 20 ml of ethanol and 10 ml of HCONMe₂ was unexpected. The compound is diamagnetic, the X_g values being *ca*. -0.6×10^{-6} (c.g.s. units) in the temperature range 85—296 K. The electronic spectrum shows bands at 9100, 10,500, 15,400, 20,600, and 25,000 cm⁻¹. An analogous selenium derivative $[Ni_2Se \{MeC(CH_2PPh_2)_3\}_2][BPh_4]_2, 1.5-$ HCONMe₂ can be obtained by reaction with H₂Se.

The molecular stereochemistry of the sulphur derivative has been determined through three dimensional X-ray analysis. Crystal data: triclinic, a = 17.754(4), b = 13.972-(3), c = 12.658(3) Å, $\alpha = 93.09(2)^{\circ}$, $\beta = 106.41(2)^{\circ}$, $\gamma = 106.89(2)^{\circ}$, U = 2850.09 Å³, $D_{\rm m} = 1.18$ g cm⁻³, $D_{\rm c} = 1.194$ g cm⁻³, Z = 1, space group $P\overline{1}$.

Intensity data were collected using a Philips PW 1100 automated diffractometer and the structure was solved by standard Patterson and Fourier methods. It was refined to a conventional R index of 0.066 for 1807 observations above background.

The structure of the complex cation (Figure) is a centrosymmetric dimer where each nickel atom is in a distorted tetrahedral environment provided by three phosphorous atoms from the phosphine ligand and by a shared sulphur atom which gives rise to crystallographically co-linear Ni-S-Ni linkages. This type of sulphur bridge seems to be unique in transition-metal complexes.¹ Each Ni-S dis-

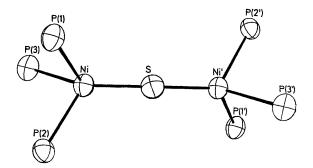


FIGURE. ORTEP drawing of the skeleton of the dimeric $[Ni_2S \{MeC(CH_2PPh_2)_3\}_2]^{2+}$

tance [2.034(2) Å] is considerably shorter than any analogous distance reported in the literature.^{2,3} Other bond distances and angles of interest are: Ni-P(1) = 2.235(6), Ni-P(2) = 2.232(6), Ni-P(3) = 2.242(5) \text{ Å}, $\angle P(1)-\text{Ni-P-}(2) = 92.37(22)^\circ$, P(2)-Ni-P(3) = 91.24(21)^\circ, P(1)-Ni-P(3) = 93.52(21)°, S-Ni-P(1) = 120.42(16)°, S-Ni-P(2) = 121.64(18)°, S-Ni-P(3) = 128.39(18)°. The Ni atom is 1.24 Å from the plane of the three phosphorus atoms.

This seems to be the first example of a tetrahedral diamagnetic nickel(II) complex; the compound [Ni₄(tep)NO]- BPh_4 [tep = 1,1,1-tris(diethylphosphinomethyl)ethane],⁴ in spite of doubts raised by recent ESCA studies,⁵ is considered to contain Niº.

The electronic spectrum of the compound is not easily interpreted in the absence of more detailed studies but the diamagnetism can be rationalized by a qualitative MO approach similar to that proposed for [Ru₂OCl₁₀]^{4-.6} In the D_{3d} symmetry of the dimer two E_u non- σ -bonding

orbitals on each nickel atom can mix with two sulphur *p*-orbitals to give π -type bonding, non-bonding, and antibonding MOs. Since the energy of the antibonding orbitals is presumably too high for them to be populated, the valence electrons can be accommodated within a closed-shell configuration. The model predicts a shortening of the Ni-S single bond distance which is in agreement with that observed.

(Received, 14th July 1975; Com. 796.)

- ¹ H. Vahrenkamp, Angew. Chem. Internat. Edn., 1975, 14, 322.
 ² G. P. Khare, A. J. Schultz, and R. Eisenberg, J. Amer. Chem. Soc., 1971, 93, 3597, and references therein.
 ³ P. E. Riley and K. Seff, Inorg. Chem., 1972, 11, 2993 and references therein.
 ⁴ D. Berglund and D. W. Meek, Inorg. Chem., 1972, 11, 1493.
 ⁵ C. A. Tolman, W. M. Riggs, W. J. Linn, C. M. King, and R. C. Wendt, Inorg. Chem., 1973, 12, 2770.
 ⁶ J. D. Dunitz and L. E. Orgel, J. Chem. Soc., 1953, 2594.